
Equivalent classes of critical circles

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys. A: Math. Gen. 30 L161

(http://iopscience.iop.org/0305-4470/30/7/003)

Download details:

IP Address: 171.66.16.112

The article was downloaded on 02/06/2010 at 06:14

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/7
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.30 (1997) L161–L165. Printed in the UK PII: S0305-4470(97)79690-2

LETTER TO THE EDITOR

Equivalent classes of critical circles
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‡ Institute of Physics, PO Box 57, Beograd, Yugoslavia‖
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Abstract. We present numerical evidence that the fractal properties of the critical invariant
circles of a typical area-preserving twist map, as summarized by thef (α) spectrum and the
generalized dimensionsD(q), depend only on the tails in the continued fraction expansion of
the corresponding rotation numbers.f (α) andD(q) are numerically the same for all critical
invariant circles of the standard and sine maps which have the rotation numbers with the same
periodic tail.

A typical Hamiltonian system possesses different types of regular orbits, such as periodic,
quasiperiodic and homoclinic. In the case of area-preserving twist maps of a cylinder, such
as the standard map (SM), given by the following equations,

T :

{
pt+1 = pt − (k/2π) sin(2πqt )

qt+1 = qt + pt+1 qt ∈ S1, pt ∈ R
(1)

the set of periodic and quasiperiodic orbits is parametrized by the rotation numberν defined
as follows,

ν := lim
i→∞

T̄i q̄ − q̄
i

q̄ ∈ R (2)

whereT̄ is the lift of the map (1).
The closure of a typical quasiperiodic orbit for sufficiently small values of the

perturbation parameterk is an analytic invariant circle. For a large value of the parameter
the closure of the quasiperiodic orbit is a more complicated invariant set, called cantorus.
It is an invariant Cantor set imbedded in the phase space.

At the critical value of the parameter, which depends on the rotation number and is
denoted byK(ν), the quasiperiodic orbit is still dense on the invariant set which is at least
homeomorphic to the circle. However, the invariant measure given by the orbit, that is
the density of the orbit points, is singular with the respect to the Lebesque measure on the
circle. The function which describes the density of the points of the critical quasiperiodic
orbit has an intricate pattern of singularities. Thus, although the critical invariant set is
homeomorphic to the circle, the critical quasiperiodic orbit is described by a fractal density
function with a non-trivial self-similar structure. It is the purpose of this letter to analyse
the dependence of the fractal properties of the critical orbits on their rotation numbers. The
global self-similar structure of fractals with the non-trivial scaling is usually described by the
spectrum of singularitiesf (α), related to the spectrum of generalized (Reneyi) dimensions
[1].
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It is generally believed that the quasiperiodic orbits on the critical invariant circles, for
a large class of area-preserving maps, are all qualitatively similar. Results of the method
of modular smoothing [2] show that the dominant singularities of the critical circles are of
the same type for circles with the rotation numbers related by a modular transformation.
Such rotation numbers have the same tail in their continued fraction expansion (CFE). The
idea that the qualitative behaviour of the critical orbits should depend only on the tail of
the CFE of the corresponding rotation number is also central in renormalization theory for
arbitrary rotation numbers [3].

One way to describe these observations is by considering fractal properties of the
invariant measure on the circle given by the critical quasiperiodic orbits. Our numerical
calculations, presented in this letter, indicate that the singularity spectrumf (α) and the
spectrum of fractal dimensionsD(q) of the invariant measureµ(ν) are the same for all
orbits of the SM with the rotation numbers with the same tails in the CFE, and are different
if the tails of the CFE are different. Thus, the critical circles of the SM can be divided into
equivalent classes with respect to their fractal properties. Members of the same class have
the samef (α) andD(q) and the tail in the CFE and different tails imply differentf (α)
andD(q).

The fractal properties of the critical tori were described byf (α) andD(q) for the first
time in [4]. However, Osbaldestin and Sarkis calculatedf (α) andD(q) for a few critical
circles without systematic exploration and discussion of the dependence on the number-
theoretical properties of the rotation numbers. The result that the information dimension
D1 is the same for all orbits with the same tail in the CFE of their rotation numbers is
implicitly contained in the recent work of Huntet al [5]. Our results show that not only
D1 but the whole spectrumD(q) depends only on the tail of the rotation number.

As pointed out before, the critical orbit can still be considered as an orbit of a
homeomorphism of the circle. To define the functionf (α) one considers an infinite set
of partitions of the circle. TheN th partition containsN pieces labelled by an index
i : 1 6 i 6 N . The size of theith piece is denoted byli , and the probability that a
point of the orbit is in theith piece is denoted bypi . One then assumes thatpi scales
aspi ≈ lαi , and defines the functionf (α) as the Hausdorf dimension of the set of points
having exponentα. If the partitions and the measure are appropriate for the considered
self-similar structure then the functionf (α) can be calculated from the properties of the
limit of the sequence of partitions.

To computef (α) of the critical circle with an arbitrary rotation numberν we follow
the procedure used in [6] for computation off (α) for the critical circle with the rotation
number equal to the golden meanν = [0, 1∞]. Similar, but not the same, partitions which
gave the same asymptotic results were used in [4, 5]. In our computations the partitions
of the circle are given by the points of the periodic orbits which approximate the critical
quasiperiodic orbit. The rotation numbers of the set of periodic orbits are chosen as the
successive continued fraction approximants of the irrationalν = [0, a1, a2 . . .]. Thus theith
partition of the circle is given by then points of the periodic orbit with the rotation number
m/n = [0, a1, a2, . . . , ai ] at the parameter valuek = K(ν). There are two such orbits, one
elliptic and one hyperbolic, but our results forf (α) andD(q) did not depend on which of
the two types of orbits were used to generate the partitions. If(pi, qi) and(pi+1, qi+1) are
coordinates of the two neighbouring points on the periodic orbit then

li(n) = [(pi − pi+1)
2+ (qi − qi+1)

2]1/2. (3)

The measure ofli(n) is defined aspi(n) = 1/n, and the partition function of the partition
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with n points is then given by

0n(qn, τn) =
i=n∑
i=1

p
qn
i

l
τn
i

= n−qn
i=n∑
i=1

l
τn
i . (4)

If the partitions and measures are appropriate for the considered fractal then the partition
function is of the order of unity when

τn = (qn − 1)Dn(qn) (5)

and

D(q) = lim
n→∞Dn(qn) (6)

whereD(q) is the set of generalized (Reneyi) dimensions of the fractal.f (α) is then given
by

fn(αn) = qnαn(τn)− τn αn(τn) = dτn
dqn

(7)

and

f (α) = lim
n→∞ fn(αn). (8)

If the results are convergent than the choice of measure and the partitions are indeed
appropriate for the considered asymptotically self-similar structure. In summary, the
procedure to calculatef (α) and D(q) for a critical quasiperiodic orbit consists of the
following steps. Estimate the critical valueK(ν), using for example the Greene criterion
[7], and then calculateτn(qn) for the partitions generated by the periodic orbits with the
rotation numbers given by the successive continued fraction convergents. Eachτn(qn)

gives the correspondingαn, fn(αn) andDn(qn). Finally, estimate the limit offn(αn) and
Dn(qn). The convergence can be enhanced by the usual ratio trick, and the condition that
0(τn, qn)/0(τn+1, qn+1) = 1 can be used to provide explicit formulae forqn and αn as
functions ofτn [6].

Our main result is illustrated in figures 1(a) and (b). The figures representf (α) and
D(q) for the critical quasiperiodic orbits with specially selected rotation numbers. The full
curve illustratesf (α) andD(q) for a class of quasiperiodic orbits with the same tail in the
CFE as the tail of the golden mean, that is [1∞]. The curves for quasiperiodic orbits with
different rotation numbers in this class are indistinguishable. The same result is true for the
classes given by other periodic tails. The dashed curve representsf (α) andD(q) for the
class with the tail equal to [2∞], the dotted curve represents the class with the tail equal to
[3∞] and the dot-dashed curve represents the class with the tail [4∞]. The functionsf (α)
andD(q) for different classes are different but within the class, given by the tail of the
CFE of the rotation number, these functions are the same. In the calculations we considered
only rotation numbers with periodic tail and various initial segments of the CFE. The reason
for such limitation is numerical. These are the orbits which are most easily approximated
numerically by the periodic convergents, and the estimates off (α) andD(q) are the most
reliable for such orbits. However, we cannot forsee any deeper reason that could make
our conclusions invalid for other irrationals, which satisfy the general conditions of the
Kolmogorov-Arnol’d-Moser (KAM) theory.

Our calculations off (α) andD(q) require knowledge of quite long periodic orbits at
the critical values of the parameter. These orbits are used to determine the values ofK(ν)

and to calculate the partition functions (4). The final results, that isf (α) andD(q), are
extremely sensitive to the value of the parameterk. In order to establish our conclusions
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Figure 1. f (α) (a) andD(q) (b) curves for the critical circles in several equivalence classes.
Shown are the classes corresponding to the tails equal to [1∞] (full), [2∞] (dashed), [3∞]
(dotted) and [4∞] (dot-dashed).

we need to calculateK(ν) with at least five significant digits, which implies calculations of
very long periodic orbits. If one of the initial coefficients in the CFE of the rotation number
is large than the long periodic orbit is in a small neighbourhood of a very unstable periodic
orbit. Calculation of such orbits is obviously a very difficult numerical problem. This has
limited us to a relatively small set of about five quasiperiodic orbits in each considered class,
which, we believe, is still typical and large enough to put confidence in our conclusions.

Finally, we would like to comment on the more frequently discussed [5, 6] type of
universality of the fractal properties of the critical circles. It is the universality of the
fractal properties of the critical circles with the same rotation number but for different
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area-preserving maps in a certain class. We have calculatedf (α) andD(q) for the sine
map obtained from the SM by replacing sin(2πq) by 1

2 sin(2πq)+ 1
4 sin(4πq), and obtained

the same results as for the standard map for all calculated critical circles. This extends results
of [5] where only the information dimensionD1 was considered.
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